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likely to be found among the electrolytes; this is indicated by the three
studied by us, and also by those studied by McBain and Laing-McBain.*

Detergents have long been used for the dispersal of various types of sub-
stances of biological interest, particularly the proteins. It is important
to emphasize that the detergent may not only affect the proteins studied
but that some of its properties such as the molecular size may fall within
that range usually considered to be characteristic of proteins alone.

Summary.—Ultracentrifugal observations using a direct reading re-
fractive index method have been made on aqueous solutions of digitonin.
Practically all of the digitonin exists in the form of micelles of homogeneous
size, with an average sedimentation constant of 5.88 X 10~!2 cm. per dyne
per sec. The micellar weight is likely to lie within the range of 75,000 to
400,000, as contrasted with a molecular weight of 1228.

* John Simon Guggenheim Memorial Fellow.
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1. Introduction.—In some recent papers' Menger proved that all con-
cepts of the Bolyai-Lobatchevsky geometry can be defined in terms of the
operations ‘“‘joining” and “‘intersecting,” basic to his algebra of projective
and affine geometry, as well as to G. Birkhoff’s lattice theory. It follows
that a complete foundation of non-Euclidean geometry can be given in
terms of these two concepts, e.g., by substituting into the ordinary postu-
lates Menger’s definitions of the concepts ‘“‘between,” ‘‘parallel,” “con-
gruent,” etc., in terms of joining and intersecting. Since postulates ob-
tained in this way would be very cumbersome, there arose the problem of
establishing some simple direct postulates concerning the two operations
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from which the non-Euclidean geometry could be developed. In what
follows we give a list of eight postulates from which the whole theories of
order and parallelism in non-Euclidean geometry can be derived.

We restrict ourselves to the case of the plane and use the concepts of
“point,” “line” and “lies on,” which as is well known can be derived
from the operations of joining and intersecting. Our present definitions
of betweenness and parallelism differ from those originally given by Menger
in that they avoid the use of “maximal triangles,” and are stated directly
in terms of the primitive notions.

2. The Postulates.—The following postulates will be assumed.

I. If A and B are any two distinct points, there exists exactly one
line m such that both 4 and B lie on m.
II. Each line contains at least five distinct points.

III. There exist at least three non-collinear points.

IV. 1If a, b are any two distinct interesecting lines, and P is a point not
on a or b, then there exists at least one line through P which intersects a, but
not b.

V. If a, b are any two non-intersecting lines, and P is any point not
on a or b, then there exists a line through P which intersects neither a nor b.
VI. If 4, B, C are distinct collinear points, and if there exist lines a
and a’ through 4, b and b’ through B, ¢ and ¢’ through C, such that

1) b and ¢ intersect, but neither meets a,

2) a’and b’ intersect, but neither meets¢’,
then each line through B meets at least one line of every pair of inter-
secting lines which pass through 4 and C, respectively.

VII. If a, b, ¢ are three mutually non-intersecting lines, and if there
exists a line meeting both @ and b, but not ¢, and also a line meeting b and ¢,
but not a, then through any point of a, there exists a line meeting b but
not c. :
VIII. If ais a given line, then through any point not on a there exist
at least two distinct lines which do not intersect a.

Postulate VIII is the only one which is not satisfied equally in the Eu-
clidean plane, VI and VII being vacuously satisfied there. All but IV
and VIII are true even in the projective plane.

3. The Theory of Order—We say of three distinct points 4, B, C that B
lies between the two other points A and C, if every line through B intersects
at least one line of each pair of intersecting lines which pass through 4 and
C, respectively. We show that any three points satisfying this definition
must be collinear, and that the triadic relation so defined satisfies the
conditions for a betweenness relation given by Huntington and Kline.2
Moreover, we derive the statement known as the axiom of Pasch: If a
line meets one side of a triangle in an interior point, then it meets exactly
one of the other two sides in an interior point, or passes through the op-
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posite vertex. Finally, the plane is shown to be convex and externally
conves, i.e., to each pair of points 4, C, there exist two points B, D such
that B lies between A and C, and C lies between A and D. These results
imply that each line separates the plane into two parts.

4. The Theory of Parallelism.—Two non-intersecting lines a and b are
said to be parallel if there exists a point P such that through P there is at
most one line which meets neither a nor . This definition is proved to be
independent of P in the sense that each point lying between'a and b has thg
same property as P. Here we say that the point Q lies between the non-
intersecting lines 7 and # if there exists a line through Q which intersects
m and » in points M and N, respectively, such that Q lies between M and
N. The relation of parallelism is clearly symmetric, and has the property
that if a is a parallel to b through a point Q, and if R is any other point of a,
then a is also a parallel to & through R.

Let ¢ be a line which intersects two parallels a, b in the points 4, B,
respectively, and P be a point of a, distinct from 4. We say that a and b
are parallel on the side of ¢ on which P lies, if there exists a line through P
intersecting ¢ in a point between 4 and B, but not intersecting 5. Here
again the definition is shown to be independent of the point P, for we
prove that any point of a or b which is on the side of ¢ on which P lies may
replace P in the definition. Of course, for a line ¢ the lines a and b may be
parallel on the side of ¢ on which P lies, whereas for another line d, they
might be parallel on the side of d opposite to that on which P lies.

If a and b are parallel, and b and c are parallel, and ¢ is a line intersecting
each of the lines a, b, ¢, then @ and c are said to be parallel to the line &
on the same side of the transversal ¢ if there exists a point P on b such that
both a and b, and b and c are parallel on that side of ¢ on which P lies.

Using these concepts, we prove the classical assumption that the relation
of parallelism is transitive in a certain sense: If a and ¢ are two lines
which are parallel to b on the same side of a transversal, then a is parallel
to c. Further, if ¢, d are two parallels to a line m through a point P, then ¢
and d are parallel to 7 on opposite sides of any line through P meeting m,
and hence there exist at most two parallels to any given line through a given
point.

For the full development of the above results, see the author’s papers
in the Reports of a Mathematical Colloguium, Issue 1, pp. 4548, Issues 2 and
3 in press.
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